The Permian–Triassic boundary in Antarctica
نویسندگان
چکیده
The Permian ended with the largest of known mass extinctions in the history of life. This signal event has been difficult to recognize in Antarctic non-marine rocks, because the boundary with the Triassic is defined by marine fossils at a stratotype section in China. Late Permian leaves (Glossopteris) and roots Vertebraria), and Early Triassic leaves (Dicroidium) and vertebrates (Lystrosaurus) roughly constrain the Permian–Triassic boundary in Antarctica. Here we locate the boundary in Antarctica more precisely using carbon isotope chemostratigraphy and total organic carbon analyses in six measured sections from Allan Hills, Shapeless Mountain, Mount Crean, Portal Mountain, Coalsack Bluff and Graphite Peak. Palaeosols and root traces also are useful for recognizing the Permian–Triassic boundary because there was a complete turnover in terrestrial ecosystems and their soils. A distinctive kind of palaeosol with berthierine nodules, the Dolores pedotype, is restricted to Early Triassic rocks. Late Permian and Middle Triassic root traces are carbonaceous, whereas those of the Early Triassic are replaced by claystone or silica. Antarctic Permian–Triassic sequences are among the most complete known, judging from the fine structure and correlation of carbon isotope anomalies. Received 23 June 2004, accepted 10 January 2005
منابع مشابه
Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica.
Multiple chondritic meteorite fragments have been found in two sedimentary rock samples from an end-Permian bed at Graphite Peak in Antarctica. The Ni/Fe, Co/Ni, and P/Fe ratios in metal grains; the Fe/Mg and Mn/Fe ratios in olivine and pyroxene; and the chemistry of Fe-, Ni-, P-, and S-bearing oxide in the meteorite fragments are typical of CM-type chondritic meteorites. In one sample, the met...
متن کاملPERMIAN-TRIASSIC BOUNDARY OF INDIAN SUBCONTINENT AND ITS INTERCONTINENTAL CORRELATION
The Permian-Triassic boundary in the Himalayas is reviewed and discussed in the light of palaeontologic and stratigraphic data collected during the past two and a half decades from Kashmir, Spiti and Nepal. The deposition of the Kuling Shales and their equivalents in different parts of the Himalayas was followed by shallowing and regression of the sea. Sedimentation was interrupted at the t...
متن کاملd13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence for methane release
Stable carbon isotopic analyses of organic carbon (d13C) in individual paleosol profiles from Permian–Triassic sequences of Antarctica reveal systematic isotopic variations with profile depth. These variations are in many cases analogous to those in modern soils, which are functions of redox conditions, soil development, and degree and type of microbial decay. In modern soils, these isotopic de...
متن کاملReturn to Coalsack Bluff and the Permian–Triassic boundary in Antarctica
Coalsack Bluff was the first discovery site in Antarctica for the latest Permian to earliest Triassic reptile Lystrosaurus. This together with discovery of Permian Glossopteris leaves during the heroic age of Antarctic exploration, indicated not only that Antarctica was part of Gondwanaland, but also that Antarctic rocks recorded faunas from the greatest of all mass extinctions at the Permian–T...
متن کاملAbrupt chemical weathering increase across the Permian–Triassic boundary
Previous studies have suggested a variety of causes for the end-Permian extinction event including a bolide impact, flood basalt volcanism, methane clathrate dissociation, or some combination of catastrophic processes. One common feature of these hypotheses is the prediction of an enhanced earliest Triassic greenhouse. New high-resolution geochemical results from Graphite Peak, Antarctica suppo...
متن کامل